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Figure 1. RADSeg is a dense, language-aligned feature encoder that enables low-parameter, low-latency open-vocabulary semantic seg-
mentation in 2D and 3D. The efficiency plots report average latency, parameter count, and mIoU across five 2D datasets on a V100. By
enhancing spatial locality of RADIO features, RADSeg outperforms previous state-of-the-art methods in accuracy while remaining
highly efficient in terms of parameter counts and inference speed.

Abstract

Open-vocabulary semantic segmentation (OVSS) underpins
many vision and robotics tasks that require generalizable
semantic understanding. Existing approaches either rely on
limited segmentation training data, which hinders gener-
alization, or apply zero-shot heuristics to vision-language
models (e.g CLIP), while the most competitive approaches
combine multiple models to improve performance at the
cost of high computational and memory demands. In
this work, we leverage an overlooked agglomerative vi-
sion foundation model, RADIO, to improve zero-shot OVSS
along three key axes simultaneously: mIoU, latency, and
parameter efficiency. We present the first comprehensive
study of RADIO for zero-shot OVSS and enhance its per-
formance through self-correlating recursive attention, self-
correlating global aggregation, and computationally effi-

*Equal contribution

cient mask refinement. Our approach, RADSeg, achieves 6-
30% mIoU improvement in the base ViT class while being
3.95x faster and using 2.5x fewer parameters. Surprisingly,
RADSeg-base (105M) outperforms previous combinations
of huge vision models (850-1350M) in mIoU, achieving
state-of-the-art accuracy with substantially lower compu-
tational and memory cost.

1. Introduction

Semantic segmentation models often need to be deployed
in open-world environments and support an open-set of
tasks. This has led to growing interest in open-vocabulary
semantic segmentation (OVSS), which enables segmenta-
tion based on arbitrary natural langauge descriptions, with
applications ranging from medical analysis [24], robotic
manipulation [30], to autonomous exploration and naviga-
tion [18, 46]. While vision language models (VLMs) such
as CLIP [27] support open-vocabulary image classification,
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their reliance on global image-text encoding fundamentally
limits their capacity for fine-grained, pixel-level localiza-
tion required for OVSS. Various approaches have since at-
tempted to adapt CLIP to the OVSS task. Some adopt a
training-based approach, either incorporating CLIP into a
new architecture [21, 43, 49], or fine-tuning CLIP specif-
ically for OVSS [29]. Both approaches, however, suffer
from limited generalization, as existing semantic segmen-
tation datasets [5, 7, 11, 25, 48] are orders of magnitude
smaller than image-captioning datasets containing billions
of image-text pairs [32].

Training-free, zero-shot approaches have emerged as a
promising alternative, alleviating the limitations of training-
based methods. Dense-inference strategies feed multiple
image crops into the global CLIP encoder to produce dense,
language-aligned feature maps [15, 41], but incur substan-
tial computational overhead. Alternative methods attempt
to restore the spatial alignment of the CLIP’s patch-wise
tokens via lightweight modifications but yield limited ac-
curacy [13, 39, 44]. More recent approaches [20, 36, 42]
improve segmentation by augmenting VLMs with combina-
tions of other foundation models such as DINOv2 [26] and
SAM [19], albeit at the cost of significantly increased model
complexity, inference latency, and GPU memory overhead.

Given these limitations of existing OVSS methods, we
investigate an underexplored agglomerative vision founda-
tion model, RADIO [28]. By distilling knowledge from
multiple foundation models into a single model, RADIO
has shown strong performance across various vision bench-
marks, in terms of generalization and efficiency. How-
ever, its potential for zero-shot OVSS remains largely unex-
plored. For instance, RayFronts [1] demonstrated RADIO’s
zero-shot capability for 3D semantic mapping, but evalua-
tions of its broader OVSS abilities remain limited.

In this work, we provide the first comprehensive study of
RADIO for zero-shot OVSS. Our analysis includes compute
and parameter efficiency for competing baselines, revealing
sharp trade-offs between mIoU, inference latency, and GPU
memory, illustrated in Fig. 1. We also examine the ability
of 2D OVSS methods to generate open-vocabulary semantic
3D maps, evaluating multi-view consistency.

Furthermore, we propose a novel and efficient pipeline,
RADSeg, based on RADIOv3. RADSeg exploits an emer-
gent property that enables alignment of RADIO’s patch-
wise features with language, enhances spatial locality by
using Self-Correlating Recursive Attention (SCRA), and
mitigates sliding-window artifacts through Self-Correlating
Global Aggregation (SCGA). Finally, we leverage RA-
DIOv3’s efficient access to SAM-huge features to further
refine the obtained masks using only 0.7% of SAM-huge
parameters. RADSeg achieves 6-30% mIoU improvement
in the base ViT class over the next best baseline (Trident
[36]) across datasets, while being 3.95x faster and requir-

ing 2.5x fewer parameters. Remarkably, RADSeg-base
(105M) surpasses the mIoU of previous compositions of
huge vision models like Trident [36] (1350M) and TextRe-
gion [42] (850M), achieving state-of-the-art mIoU with
low computational and GPU memory requirements.
Our contributions can be summarized as:
• We conduct the first thorough empirical study of the foun-

dational model RADIO for zero-shot open-vocabulary se-
mantic segmentation (ZSOVSS), demonstrating its supe-
riority to other backbones.

• We introduce a novel pipeline using RADIOv3 that ad-
vances the state-of-the-art in ZSOVSS while maintaining
low parameter counts and computational efficiency.

• We perform comprehensive evaluations on five 2D and
three 3D datasets across various resolutions and model
sizes, showing that RADSeg consistently outperforms
baselines at any resolution or model size budget.

2. Related work

2.1. Vision and Language Foundation Models
Vision-language foundation models (VLMs) trained on
large amounts of image-text pairs have shown great gen-
eralization capabilties for various vision-language tasks
[27, 38, 47]. VLMs align natural language and images
into the same latent feature space, enabling zero-shot open-
vocabulary classification by comparing text and image em-
beddings. However, such models are trained to align only
a single CLS token that captures the global image context,
hence termed global image-level VLMs. Consequently, the
patch-wise/spatial tokens often exhibit poor spatial locality
and language alignment. Recent research has sought to ad-
dress these limitations to unlock open-vocabulary semantic
segmentation (OVSS), which we discuss next.

2.2. Open-Vocabulary Semantic Segmentation
OVSS allows users to segment any image by simply pro-
viding natural language queries, removing the need for re-
training when new categories are encountered in the wild.
To achieve this, many existing methods fine-tune global
image-level VLMs such as CLIP [27] on limited seg-
mentation datasets at the expense of generalization ability
[21, 29, 43, 49], i.e., training-based approaches.

In contrast, training-free approaches have attracted par-
ticular interest, as they generate dense, class-agnostic,
language-aligned feature maps directly from images and
generalize to arbitrary datasets in a zero-shot manner. Some
of these methods adopt a ‘dense-inference’ strategy [15,
41], forwarding multiple crops or segments of an image
through global VLMs and aggregating the results to ob-
tain the map, yet incur substantial computational overhead.
Others improve spatial locality and language alignment in
global VLMs through lightweight attention modifications
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Figure 2. Overview of the RADSeg pipeline. RGB sliding windows are processed by the RADIO backbone. Self-Correlating Recursive
Attention (SCRA) computes a similarity matrix from these outputs, which is recursively fed back into the last attention block of RADIO.
Feature windows are aggregated into a feature map and refined through Self-Correlating Global Aggregation (SCGA) to reduce noise and
windowing artifacts. Features are language-aligned with the SigLIP CLS token adaptor, and predictions are made by comparing them with
text embeddings. Optionally, masks can be further refined using RADIO-SAM, requiring only +20M additional parameters.

[13, 39], or residual connections [3, 44]. While these meth-
ods are computationally efficient, they yield lower segmen-
tation accuracy. Another line of training-free methods aug-
ment VLMs with additional foundation models to produce
dense language aligned features. ProxyClip [20] leverages
DINO’s [6] strong spatial locality to refine CLIP features,
Trident [36] extends it by incorporating SAM [19] for re-
finement; and TextRegion [42] integrates SAM2 [31] with
CLIP. While these methods leveraging multiple foundation
models achieve impressive segmentation accuracy, they in-
cur significant memory and computational costs.

Distinctively, our work incorporates RADIO [14, 28]–
an agglomerative model that distills knowledge from SAM,
CLIP, SigLIP [47], and DINOv2 [26]–within a novel
pipeline. By leveraging this unified foundation model,
our approach outperforms the methods that explicitly com-
bine multiple foundation models in segmentation accu-
racy, while maintaining the computational and memory ef-
ficiency of lightweight attention modification methods.

2.3. 3D Open Vocabulary Semantic Segmentation
A growing body of work attempts to leverage 2D VLMs
to achieve training-free/generalizable OVSS in 3D and cre-
ate open-vocabulary 3D maps. These maps take vari-
ous forms, ranging from semantic neural radiance fields
(NeRFs) [17, 33], gaussian splats [16, 35], scene graphs
[12, 40] to simple point clouds or voxels [1, 15]. The most
common strategy for obtaining dense, language-aligned
features is to detect bounding boxes with GroundingDINO
[23], use the detections to prompt SAM [19] for segmenta-

tion, then cropping each segment and forwarding it through
CLIP [27]. However, this pipeline is computationally and
memory intensive. Recently, RayFronts [1] showed that us-
ing RADIOv2.5’s SigLIP CLS-token adaptor to project RA-
DIO’s patch-wise tokens, combined with neighbor-aware
attention [13], can yield dense, language-aligned feature
maps–achieving impressive results on 3D OVSS datasets.
Building on this insight, we conduct the first comprehensive
evaluation of RADIOv2.5 and RADIOv3 on both 2D and
3D ZSOVSS, and introduce novel spatial locality improve-
ments to enable fast, memory efficient open-vocabulary 3D
mapping with state-of-the-art segmentation performance.

3. Method
This section overviews the RADSeg pipeline (Fig. 2), cov-
ering preliminaries on RADIO (Sec. 3.1), then RADSeg’s
main components–dense language alignment (Sec. 3.2),
SCRA (Sec. 3.3), SCGA (Sec. 3.4)–and the optional mask
refinement process in RADSeg+ (Sec. 3.5).

3.1. RADIO Preliminary
RADIO [14, 28] is an agglomerative vision foundation
model that unifies knowledge distilled from CLIP [27],
SigLIP[47], SAM [19], and DINOv2 [26] into a single
model. RADIO employs a vision transformer (ViT) [10]:
an image I ∈ RH×W×3 is divided into Npatch = H×W

Ph×Pw

non-overlapping patches P ∈ RNpatch×Ph×Pw×3, which are
linearly projected into patch-wise tokens Tpatch ∈ RNpatch×D,
where D is the token embedding dimension. RADIO also
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prepends four separate CLS tokens, one for each teacher
model (CLIP, SigLIP, SAM, DINOv2), yielding Tcls ∈
R4×D. We denote the combined tokens as T ∈ RN×D,
where N = Npatch + 4 + R (R register tokens Treg are ad-
ditionally introduced to mitigate high-norm non-local out-
put tokens [9]). Patch tokens Tpatch model spatially covari-
ant/local features and CLS tokens Tcls model global features
summarizing the image. Unlike other agglomerative mod-
els that only align patch-wise output tokens to teachers (e.g.
Theia [34]), RADIO aligns both patch-wise and CLS out-
put tokens to their teacher counterparts through lightweight
two-layer MLPs (MLPpatch and MLPcls), yielding adapted
tokens T̃patch and T̃cls. Formally,

T̃
(m)
patch = MLP(m)

patch(Tl,patch), T̃
(m)
cls = MLP(m)

cls (T
(m)
l,cls ) (1)

where m ∈ {clip, siglip, sam, dinov2}1 and the subscript
l denote last block for output tokens. Finally, RADIO
demonstrates strong spatial locality in its patch-wise fea-
tures, a property important for dense prediction tasks such
as semantic segmentation. Since VLMs like CLIP and
SigLIP only align the CLS tokens to language, RADIO
learns a global image-language alignment.

3.2. Getting Dense Language Alignment
RADIO has only been trained to align its SigLIP CLS out-
put token T siglip

l,cls to the CLS token of the SigLIP teacher:

T̃
(siglip)
cls = MLP(siglip)

cls

(
T

(siglip)
l,cls

)
,min

θ
L
(
T̃

(siglip)
cls , T̂

(siglip)
l,cls

)
(2)

where T̃ are adapted tokens, T̂ are original teacher tokens,
and L(x, y) is a distance loss function that gets minimized.
This training only aligns the global summary of an image
with language, enabling zero-shot open-vocabulary clas-
sification. Similarly, RADIO aligns its patch output tokens
Tl,patch to SigLIP’s output patch tokens T̂ siglip

l,patch through an
MLP. However, SigLIP patch tokens exhibit poor spatial-
language alignment as shown in Tab. 3. Consequently, RA-
DIO trained a linear probe on small segmentation datasets,
limiting generalization to a closed vocabulary.

In contrast, we build on an observed emergent property
of RADIO that enables dense, language-aligned feature ex-
traction [1]. By simply applying the SigLIP CLS token
adaptor on RADIO’s patch tokens,

MLP(siglip)
cls (Tl,patch),

we obtain dense, language-aligned features suitable for
OVSS. We empirically show that this emergent property
holds for RADIOv2.5 and the newer RADIOv3, across

1A notable exception is that CLIP patch-wise and CLS outputs have
different embedding dimensions as the CLS output token goes through an-
other projection to be aligned to language.

K-K Attn Adapted DINOv2

Adapted SAMBlock ℓ/2Block ℓ-1Block ℓ

Q-K Attn

K-K Attn Adapted DINOv2

Adapted SAMBlock ℓ/2Block ℓ-1Block ℓ

Q-K Attn

Figure 3. Qualitative comparison of last block attention and patch-
wise similarity at different parts of the RADIO framework. The
output of the RADIO backbone (Block l) can consistently attend
to semantically similar patches, motivating our SCRA approach.

model sizes and for both SigLIP and CLIP adaptation.
However, directly using the resulting feature maps yields
suboptimal segmentation performance, motivating further
alignment refinements in the following sections.

3.3. Self-Correlating Recursive Attention
A paradigm that has proven successful in previous training-
free OVSS approaches [3, 13, 20, 36, 39, 44] is to exploit
the last self-attention block, denoted as SAl:

SAl(T ) = Attn(MLPl
Q(T ),MLPl

K(T ),MLPl
V (T )) (3)

, where Attn(Q,K, V ) = softmax
(

QK⊤
√
dk

)
V . The last self-

attention block in encoders like CLIP and SigLIP compro-
mises spatial locality by focusing on CLS token. This can
be mitigated by encouraging attention to semantically sim-
ilar patches. Several methods have proposed to recover this
spatial alignment either through light-weight attention mod-
ifications yielding limited accuracy, or by incorporating ad-
ditional backbones to provide better attention, achieving in-
creased accuracy at the cost of memory and latency.

In contrast to these extremes, our goal is to achieve high
accuracy without additional overheads. To this end, we ex-
amine what can be leveraged directly within RADIO. As
shown in Fig. 3, we compare various attention and patch-
similarity maps–computed without external backbones, in-
cluding standard query-key and key-key attention, similar-
ity maps from RADIO’s intermediate blocks, and similarity
maps derived from adapted DINOv2 and SAM patch tokens
T̃

(dinov2)
patch , T̃ (sam)

patch . We find that RADIO’s last block (Block
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l) offers the most stable spatial locality, providing a strong
foundation for efficient zero-shot segmentation without ex-
ternal augmentations.

Building on these findings, we propose a novel attention
enhancement method, called self-correlating recursive at-
tention (SCRA). As shown in Fig. 2, SCRA takes the out-
put tokens Tl ∈ RN×D of the model, and computes a nor-
malized correlation (cosine similarity) matrix C = ŤlŤ

⊤
l ,

where Ťl = Tl/∥Tl∥2. Cells with negative correlation be-
tween patches are set to −∞, forcing patches to attend only
to similar ones [20]. More formally,

Tl = MLPl (SA (Tl−1)) , Ťl = Tl/∥Tl∥2 (4)

Cij =

{
Ť

(i)
l · Ť (j)

l , if Ť (i)
l · Ť (j)

l ≥ 0

−∞, otherwise
(5)

A softmax is then applied across each column of a scaled C
to ensure that each patch’s attention sums to one, keeping
the resulting features within the convex hull of the originals.
Finally, the last block’s activations are recomputed using
these self-correlation weights. SCRA computes its output
Tscra using RADIO’s last block output Tl as follows1:

Tscra = MLPl

(
softmax(τscraC) ·MLPl

V (Tl)
)

(6)

where τscra > 1 is a temperature scaling factor that sharp-
ens attention to only very similar patches. SCRA is able
to improve the spatial-locality of RADIO features without
introducing additional parameters and with minimal com-
putational overhead of computing Eq. (5) and Eq. (6).

3.4. Self-Correlating Global Aggregation
When performing sliding window inference, we aggregate
windows in feature space, which introduces noisy artifacts
[36] demonstrated in Fig. 2. We propose a simple and effec-
tive self-correlating global aggregation (SCGA). SCGA
computes a self-correlation matrix from the aggregated fea-
ture map G = ŤaggŤ

⊤
agg, where Ťagg = Tagg/∥Tagg∥2.

Similar to SCRA, cells with negative correlation between
patches are set to −∞, a softmax is applied to each column
of a scaled G. The correlation matrix G is used as attention
to aggregate the tokens:

Gij =

{
Ť

(i)
agg · Ť (j)

agg , if Ť (i)
agg · Ť (j)

agg ≥ 0

−∞, otherwise
(7)

Tscga = softmax(τscgaG) · Tagg (8)

Qualitatively, Fig. 2 shows how SCGA suppresses the noise
and windowing artifacts, while maintaining the sharpness
of the feature map, all while not requiring additional back-
bones and maintaining efficiency.

1Ignoring standard ViT layer norms, multiple attention heads, and
residual connections for simplicity.

Together, dense language alignment, SCRA, and SCGA
constitute the core components of RADSeg. In the next
subsection, we introduce an optional mask-refinement stage
that extends the framework to RADSeg+.

3.5. RADIO-SAM Refinement
Most OVSS methods rely on ViT backbones, producing
coarse feature maps with 14-16x downsampling. Even with
overlapping windows, this resolution gap remains. Prior
work closes this gap either with RGB-based refiners such as
PAMR [2], which are computationally heavy, or with SAM-
based refinement [22, 36], which improves quality but re-
quires an additional backbone.

Within the RADIO framework, however, we can lever-
age SAM-huge at only a +20M increase in parame-
ters. RADIO readily provides an adaptor that maps its
output patch tokens Tl,patch into the SAM-huge token space
T̃

(sam)
patch = MLP

(sam)
patch (Tl,patch) . As a result, we only need the

decoder and prompt encoders of SAM-huge, which consti-
tute 0.7% of the total SAM-huge parameters.

Following SAM-based refinement strategies [36, 42], we
generate point, box, and mask prompts from the coarse pre-
dictions of Tscga. Rather than simply reusing Tscga features,
which we find degrades accuracy, we re-encode the full im-
age with RADIO+SCRA (no sliding windows) to feed into
SAM. As shown in Fig. 2, RADIO-SAM refinement sharp-
ens boundaries and yields better final masks.

4. Experiments
4.1. 2D Zero-Shot Open Vocabulary Segmentation
Benchmark Settings. Consistent with previous meth-
ods [4, 13, 36, 42], we evaluate our method across five
widely used 2D semantic segmentation benchmarks: PAS-
CAL VOC [11], PASCAL Context [25], COCO-Stuff [5],
Cityscapes [7], and ADE20K [48]. In prior work, differ-
ent datasets and baselines were often evaluated at different
resolutions, making it diffcult to disentangle performance
gains from higher resolutions versus improvements due to
the method itself. Thus, for a comprehensive evaluation, we
evaluate three representative resolution standards set by pre-
vious methods: low (336-560) [13, 39, 44], mid (336-688)
[36], and high (672-1344) [42], with details per dataset in
the supplementary. We do not allow any method, to access a
higher input resolution than its setting, yet, it can operate on
lower resolutions. We do not employ heavy post-processing
(e.g PAMR [2]) for any of the methods.

We follow standard OVSS protocols, each class is em-
bedded in prompt templates, encoded with the text en-
coder, and used to obtain segmentation masks through co-
sine similarity with the feature maps. We ignore the am-
biguous ‘background’ label. We report mean Intersection
over Union (mIoU) on the validation split of each dataset.
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Figure 4. Qualitative 2D Open-Vocabulary Semantic Segmentation Results. For each of the five benchmark datasets, we show a
representative example and compare RADSeg and RADSeg+ with competitive baselines (SC-CLIP, Talk2DINO, Trident, and TextRegion).
Both RADSeg and RADSeg+ produce noticeably clearer and more accurate segmentation maps across all cases.

Table 1. 2D zero-shot open-vocabulary semantic segmentation mIoU results across resolution limits and model sizes. Ranking shown
as first , second , and third . One ranking for base and huge is reported to highlight that RADSeg-base is superior to huge baselines.
Underlined cells show results obtained at lower resolution. Numbers at specific resolutions are included in the supplementary.

Methods ≤ Low Resolution ≤ Mid Resolution ≤ High Resolution
CTX VOC Stuff ADE City Avg CTX VOC Stuff ADE City Avg CTX VOC Stuff ADE City Avg

Base Models
NACLIP [13] 35.17 79.71 23.30 17.42 35.49 38.22 35.17 80.29 23.64 17.78 35.98 38.48 35.17 80.29 23.64 17.80 36.74 38.48
ResCLIP [44] 36.80 82.32 24.70 18.03 35.85 39.54 36.80 85.89 25.07 18.55 36.19 40.49 36.80 85.89 25.07 18.57 36.88 40.49
RayFronts [1] 36.81 72.59 25.34 23.38 36.29 38.88 38.07 80.12 27.39 24.63 40.47 42.14 38.07 80.12 27.39 24.63 40.47 42.14
ProxyCLIP [20] 38.74 78.18 26.11 19.71 39.69 40.49 38.74 80.31 26.41 19.71 40.39 40.93 38.74 80.31 26.41 19.71 40.39 40.93
SC-CLIP [3] 40.12 84.29 26.62 20.06 41.02 42.42 40.12 87.67 27.25 20.68 41.02 43.19 40.12 87.67 27.25 20.68 41.24 43.19
Talk2Dino [4] 39.43 85.68 27.43 20.42 38.05 42.20 40.31 85.68 27.89 21.67 39.47 43.00 40.31 85.68 27.89 21.70 41.15 43.00
Trident [36] 41.62 83.74 28.22 21.17 41.86 43.32 42.16 84.50 28.24 21.98 42.08 43.79 42.16 84.50 28.24 21.98 42.19 43.79
TextRegion [42] 41.53 83.83 27.39 21.21 40.49 43.17 42.29 84.21 27.39 21.74 41.26 43.33 42.88 84.21 28.62 22.55 42.15 43.88
RADSeg 44.49 87.24 29.79 27.16 42.04 46.14 45.64 89.28 30.76 28.96 45.35 48.00 45.64 89.28 30.76 28.96 48.79 48.00
RADSeg+ 48.23 88.69 31.66 29.44 45.59 48.72 48.59 90.35 32.45 30.86 47.82 50.01 48.59 90.35 32.45 30.86 50.72 50.01

Huge Models
RayFronts [1] 31.67 72.59 23.31 20.46 28.98 35.40 32.29 73.36 23.44 21.19 31.84 36.42 32.29 73.36 23.44 21.19 34.27 36.42
ProxyCLIP [20] 39.16 78.02 26.19 23.90 43.64 42.18 39.16 83.03 27.76 24.05 43.92 43.21 39.16 83.03 27.76 24.05 43.92 43.21
Trident [36] 43.16 87.97 28.55 25.64 46.87 46.44 44.32 88.67 28.55 26.70 46.87 46.90 44.32 88.67 28.55 27.02 47.34 46.90
TextRegion [42] 44.04 89.53 30.19 24.53 47.35 47.13 44.76 89.53 30.19 26.42 47.35 47.50 46.13 89.53 31.22 27.30 47.35 48.18
RADSeg 42.27 89.58 28.30 25.96 38.85 44.99 44.80 89.74 28.93 28.21 42.93 46.92 45.01 89.74 29.46 28.21 47.75 47.58
RADSeg+ 45.44 90.04 30.12 27.75 41.66 47.00 47.74 90.14 30.44 29.92 45.78 48.80 47.92 90.14 30.84 29.92 50.01 49.57

We report our two methods, RADSeg and RADSeg+,
without and with RADIO-SAM refinement. We evalu-
ate both the base and huge variants of RADIOv3, using
SigLIP2 as the feature adaptor with τscra = 10, τscga = 10.

Baselines. We compare our approach against a diverse
set of SOTA training-free OVSS methods. This includes
CLIP-based adaptations such as NACLIP [13], ResCLIP
[44], and SC-CLIP [3], which refine attention blocks within
the CLIP architecture; hybrid multi-model fusion methods

such as ProxyCLIP [20], Talk2DINO [4], Trident [36], and
TextRegion [42], which leverage multiple vision founda-
tion models including CLIP, DINO, and SAM; and the only
RADIO-based method Rayfronts [1].

Quantitative and Qualitative Results. Tab. 1 shows
how well methods perform within a resolution limit across
datasets. RADSeg establishes a clear performance margin
over prior zero-shot OVSS methods. In the base setting,
RADSeg achieves the highest average mIoU at all resolu-
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Figure 5. Qualitative 3D Open-Vocabulary Semantic Segmen-
tation Results. We show two scenes: one from Replica (“chair”,
“table”, “couch” classes), and one from ScanNet++ (“bed”, “pil-
low”, “monitor” classes). Segmented voxels are overlaid on the
RGB for visualization. Across all 3D baselines, RADSeg provides
more accurate segmentations with far fewer outlier voxels.

tion budgets, outperforming the closest baselines by +3–5%
mIoU. RADSeg+ strengthens this lead further, improving
average mIoU by up to +7% mIoU over the next best base-
line. Remarkably, our base model already surpasses sev-
eral huge-model baselines, underscoring the effectiveness
of RADIO and our pipeline.

We show qualitative comparisons of RADSeg and
RADSeg+ against baselines, using base models, in Fig. 4.
RADSeg demonstrates superior semantic consistency and
more precise segmentation boundaries, especially evident in
challenging categories like “person” and in complex scenes
in Pascal Context and Cityscapes.

4.2. 3D Zero-Shot Open Vocabulary Segmentation
While 2D segmentation evaluates per-frame semantic un-
derstanding, it fails to capture multi-view semantic consis-
tency, essential for embodied perception. Thus, we extend
our evaluation to 3D, examining how different encoders
generalize within a 3D reconstruction pipeline. We focus on
evaluating encoders rather than 3D scene representations.
Thus, we adopt a simple setup across methods, in which 2D
outputs are unprojected onto point clouds and aggregated
within voxels, averaging coincident point features.

Benchmark Settings. We test two 2D-to-3D lifting
strategies: projecting the features, or projecting the segmen-
tation probabilities. Probability projection prevents feature
collisions and supports post-segmentation refinement, yet
forces closed-set outputs. Feature projections retain open-
vocabulary flexibility at the cost of possible aliasing.

We evaluate on Replica [37] and ScanNet [8] follow-
ing prior work [1], and additionally on ScanNet++ [45].
For a fair comparison, we extend the top-performing 2D
baselines Trident, SC-CLIP, TextRegion, Talk2DINO, and
RayFronts, to 3D using the same projection and fusion pro-
cedure. Since 3D dense feature maps require much more
GPU memory, we only evaluate base models for all base-
lines and our method.

Quantitative and Qualitative Results. Across all
benchmarks, RADSeg establishes a clear performance mar-
gin over the baselines. Under feature-space aggregation,
our approach achieves the highest mIoU on all the datasets,
improving over the strongest baselines by +3–5% mIoU on
average. When evaluated in probability space, which al-
lows for the evaluation of RADSeg+, it again ranks first
or second in every setting: without refinement, it secures
the second-highest metrics across datasets, while with re-
finement it achieves SOTA results in terms of mIoU/f-
mIoU with 33.05%/59.21% on Replica, 38.58%/48.49%
on ScanNet, and 33.27%/48.35% on ScanNet++. Notably,
while RayFronts struggles in 2D, its use of RADIO allows
it to be competitive in 3D, showing the importance of a
complementary 3D evaluation. Overall, RADSeg consis-
tently outperforms CLIP-based, DINO-based, and multi-
model baselines showing its strong multi-view consistency.

Fig. 5 presents qualitative comparisons between
RADSeg and all the baselines in our evaluation. Across a
diverse set of queries, RADSeg consistently yields cleaner
and more semantically coherent predictions, producing
significantly fewer visual outliers than competing methods.

4.3. Ablation Studies

Exploring RADIO’s language alignment. Tab. 3 sum-
marizes the performance of different RADIO language
adapters. Following RADIO’s training regimen of project-
ing RADIO patch features to SigLIP/CLIP patch features
shows no language alignment with a dimensionality mis-
match in case of CLIP, while using CLS adaptors on patch
features yields high OVSS mIoU (34-44%) across datasets,
highlighting RADIO’s emergent dense language alignment.
RADIOv3 with SigLIP2 CLS shows the highest alignment
which we adopt in our method. Notably, RADIO’s language
alignment excels with base model sizes, making it all the
more suitable for efficient zero-shot OVSS.

Effectiveness of RADSeg components. Tab. 4 summa-
rizes 2D OVSS performance across datasets for evaluating
our attention and refinement components. Notably, SCRA
and SCGA provide consistent improvements with an aver-
age +2%, and +1.4% respectively, at negligible computa-
tional overhead. RADIO-SAM refinement improves by an-
other +2% yet slows down the pipeline by 3×. Regard-
less, RADSeg+ (which includes RADIO-SAM refinement)
remains significantly faster than competing methods.
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Table 2. 3D zero-shot open-vocabulary semantic segmentation mIoU results. Ranking shown as first , second , and third . RADSeg
consistently shows superior performance across datasets emphasizing its multi-view consistency.

Feature Space 3D Aggregation Probability Space 3D Aggregation

Replica [37] ScanNet [8] ScanNet++ [45] Replica [37] ScanNet [8] ScanNet++ [45]

Methods mIoU f-mIoU mIoU f-mIoU mIoU f-mIoU mIoU f-mIoU mIoU f-mIoU mIoU f-mIoU

SC-CLIP [3] 21.33 43.57 28.04 40.57 19.24 37.68 21.98 44.31 28.59 40.89 20.97 38.10
Talk2Dino [4] 23.12 35.07 28.58 32.88 24.88 30.96 23.94 36.86 29.13 34.47 25.43 32.37
Trident [36] 23.62 47.18 32.23 43.12 23.11 41.56 25.44 47.48 32.78 43.67 24.21 42.23
Trident (w/refine) – – – – – – 27.38 49.81 32.63 44.17 26.24 44.51
TextRegion [42] 27.15 50.50 34.42 44.47 24.08 45.86 28.35 50.90 35.83 46.09 24.59 45.91
RayFronts [1] 28.39 52.05 31.02 42.14 26.34 38.91 31.28 53.28 31.05 42.30 26.86 40.55
RADSeg 32.29 58.96 36.29 45.64 31.95 46.53 32.68 57.02 36.41 46.92 32.9 47.76
RADSeg+ – – – – – – 33.05 59.21 38.58 48.49 33.27 48.35

Table 3. Ablation of different RADIO language adapters across
model sizes. Mid resolution is used. Average mIoU reported
across 2D datasets.

Methods Base Large Huge
Rv2.5-SigLIPcls 39.96 38.55 36.97
Rv2.5-SigLIPpatch 0.32 0.31 0.36
Rv2.5-CLIPcls 39.43 37.79 34.85
Rv2.5-CLIPpatch NA NA NA
Rv3-SigLIP2cls 44.62 0.86 41.24
Rv3-SigLIP2patch 0.73 0.76 0.25
Rv3-CLIPcls 42.32 0.75 36.79
Rv3-CLIPpatch NA NA NA

Table 4. Ablation study of components of RADSeg on mid reso-
lution. Average mIoU and latency on a V100 across datasets.

Methods mIoU (%) (s)CTX VOC Stuff ADE City Avg
Base 40.4 88.07 27.41 27.3 39.94 44.62 0.107
+ SCRA 43.07 88.03 29.87 27.69 44.5 46.63 0.111
+ SCGA 45.64 89.28 30.76 28.96 45.35 48.00 0.115
+ R-SAM 48.48 90.14 32.48 30.83 48.10 50.01 0.354

Table 5. Ablation study showing RADIO’s ability to empower
existing approaches. Average mIoU across datasets, number of
parameters for base models and latency on a V100. RADIO can
unlock efficiency and mIoU gains for different baselines

Methods mIoU (%) Params (M) Latency (s)
NACLIP [13] 38.48 86M 0.089
NARADIO 44.54 105M 0.107
ProxyCLIP [20] 40.87 171M 0.667
ProxyRADIO-D 45.44 106M 0.109
ProxyRADIO-S 46.05 105M 0.109
ResCLIP [44] 40.33 86M 0.261
ResRADIO 45.18 105M 0.123
RADSeg 48.00 105M 0.115

Can RADIO improve baseline approaches? To
demonstrate RADIO’s broader applicability in OVSS be-
yond RADSeg, we adapt some of the previous approaches

that can readily benefit from the backbone. Specifically, we
use RADIOv3 with adapted SigLIP2 features and incorpo-
rate neighbor aware [13], residual [44], and proxy attention
[20]. Tab. 5 highlights how replacing CLIP with RADIO
can provide significant consistent improvements in mIoU,
and efficiency, showing RADIO’s potential as a backbone
for OVSS.

4.4. Parameter and Compute Efficiency
To better contextualize the segmentation accuracy improve-
ments, we perform a thorough analysis of each method’s
latency and parameter efficiency. For a holistic view that
reflects all computations that enabled a method to obtain its
mIoU results, we report average latency across all datasets
at mid resolution. As illustrated in Fig. 1, RADSeg-base
surpasses the strongest baselines, TextRegion Huge and Tri-
dent Huge, achieving 9.27× lower latency while requiring
8.57× fewer parameters. Furthermore, RADSeg+, which
enhances RADSeg with SAM-based refinement, delivers
more fine-grained segmentation maps while remaining 3×
faster and using 7.26× fewer parameters.

5. Conclusion
We present RADSeg, a dense language-aligned encoder
that leverages the RADIO agglomerative framework.
RADSeg effectively employs self correlations for at-
tention and window aggregation, and RADIO SAM
adapted features for efficient mask refinement. We
evaluate RADSeg on 8 datasets in 2D and 3D showing
significant improvements in zero-shot open-vocabulary
semantic segmentation (ZSOVSS) across mIoU, latency,
and parameter efficiency. In addition, we provide the
first empirical study on the use of RADIO for ZSOVSS
highlighting its efficiency and strong emergent dense
language alignment. We expect this work to motivate
broader exploration of agglomerative models towards
efficient, accurate, and generalizable open-vocabulary
semantic segmentation. Our future work aims to incorpo-
rate instance differentiation, and multi-label segmentation.
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Trzciński, and Oriane Siméoni. Clip-diy: Clip dense infer-
ence yields open-vocabulary semantic segmentation for-free.
In Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, pages 1403–1413, 2024. 2

[42] Yao Xiao, Qiqian Fu, Heyi Tao, Yuqun Wu, Zhen Zhu, and
Derek Hoiem. Textregion: Text-aligned region tokens from
frozen image-text models. arXiv preprint arXiv:2505.23769,
2025. 2, 3, 5, 6, 8, 1

[43] Mengde Xu, Zheng Zhang, Fangyun Wei, Han Hu, and Xi-
ang Bai. Side adapter network for open-vocabulary semantic
segmentation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 2945–
2954, 2023. 2

[44] Yuhang Yang, Jinhong Deng, Wen Li, and Lixin Duan.
Resclip: Residual attention for training-free dense vision-
language inference. In Proceedings of the Computer Vision
and Pattern Recognition Conference, pages 29968–29978,
2025. 2, 3, 4, 5, 6, 8, 1

[45] Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner,
and Angela Dai. Scannet++: A high-fidelity dataset of 3d in-
door scenes. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 12–22, 2023. 7, 8

10



[46] Naoki Yokoyama, Sehoon Ha, Dhruv Batra, Jiuguang Wang,
and Bernadette Bucher. Vlfm: Vision-language frontier
maps for zero-shot semantic navigation. In 2024 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
pages 42–48. IEEE, 2024. 1

[47] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and
Lucas Beyer. Sigmoid loss for language image pre-training.
In Proceedings of the IEEE/CVF international conference on
computer vision, pages 11975–11986, 2023. 2, 3

[48] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 633–641,
2017. 2, 5

[49] Chong Zhou, Chen Change Loy, and Bo Dai. Extract free
dense labels from clip. In European conference on computer
vision, pages 696–712. Springer, 2022. 2

11



RADSeg: Unleashing Parameter and Compute Efficient Zero-Shot
Open-Vocabulary Segmentation Using Agglomerative Models

Supplementary Material

Limitations

While RADSeg-base delivers strong mIoU gains with a
lightweight vision encoder, it relies on a huge text encoder,
unlike CLIP-based baselines in the same model size class.
However, text features are computed once per query, so their
cost is amortized across many images. Furthermore, Al-
though we demonstrate RADSeg’s strong performance on
eight 2D and 3D OVSS datasets, current OVSS benchmarks
remain limited. They primarily test whether each pixel is
more similar to query A, B, or C. A more challenging set-
ting would prevent access to all class labels and evaluate
queries individually (is this pixel similar to query A). More-
over, support for multi-label segmentation is not explored.
Developing and evaluating on such challenging settings is
left for future work.
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A2. Additional 2D Evaluation Details

Table A.1. Adopted resolution and sliding window settings. Cell
format: Shorter-side-Crop-Stride. TextRegion’s stride always
equals the crop size as per their method.

Dataset Low [13, 39, 44] Mid [36] High [42]

VOC 336-224-112 336-336-112 672-336-336
Stuff 336-224-112 448-336-224 896-336-336
CTX/ADE 336-224-112 576-336-224 672-336-336
City 560-224-112 688-336-224 1344-336-336

Emphasis on resolution standardization. By examin-
ing the settings used for evaluation in previous works, we
observe varying resolution standards, not only across meth-
ods and datasets, but even within different sub-modules of
a method itself. These inconsistencies can conflate per-
formance gains from increased resolutions with method
improvements. For example, while NACLIP [13] and
ResCLIP [44] choose the low resolution setting in their
evaluations, Tab. 1 shows that they benefit from increased
resolutions at the mid setting, making it unfair to com-
pare their low-resolution performance with mid or high res-
olution performances of other approaches, which is done
in many previous works [36, 42]. Furthermore, previous
works have shown that increasing resolution can hurt per-
formance [4, 36]. Thus, for a fair standard comparison,
we rerun all baselines with 3 different representative resolu-
tion and sliding window standards (low, mid, high) shown
in Tab. A.1. Note that evaluation resolution, at which we
compute metrics, always remains unchanged. To avoid pe-
nalizing approaches that perform better when using lower
resolutions, we report the maximum performance at a
resolution limit in Tab. 1. Tab. 1 answers what the best
performance is for a method given a resolution limit, while
its source data, shown in Tab. A.2, answers what the perfor-
mance is at a particular resolution. While Tab. 1 is more
relevant for method comparisons, we report Tab. A.2 for
completeness.
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Table A.2. 2D zero-shot open-vocabulary semantic segmentation mIoU results across resolutions and model sizes. Ranking shown as
first , second , and third . One ranking for base and huge is reported to highlight that RADSeg-base is superior to huge baselines.

Methods = Low Resolution = Mid Resolution = High Resolution
CTX VOC Stuff ADE City Avg CTX VOC Stuff ADE City Avg CTX VOC Stuff ADE City Avg

Base Models
NACLIP [13] 35.17 79.71 23.3 17.42 35.49 38.22 34.7 80.29 23.64 17.78 35.98 38.48 33.86 72.57 20.04 17.8 36.74 36.20
ResCLIP [44] 36.8 82.32 24.7 18.03 35.85 39.54 36.75 85.89 25.07 18.55 36.19 40.49 35.98 76.6 22.01 18.57 36.88 38.01
RayFronts [1] 36.81 72.59 25.34 23.38 36.29 38.88 38.07 80.12 27.39 24.63 40.47 42.14 36.99 67.39 23.92 24.18 39.13 38.32
ProxyCLIP [20] 38.74 78.18 26.11 19.71 39.69 40.49 37.88 80.31 26.41 19.67 40.39 40.93 34.85 70.44 21.63 19.18 38.84 36.99
SC-CLIP [3] 40.12 84.29 26.62 20.06 41.02 42.42 39.87 87.67 27.25 20.68 40.49 43.19 38.68 77.67 22.89 20.34 41.24 40.16
Talk2Dino [4] 39.43 85.68 27.43 20.42 38.05 42.20 40.31 85.66 27.89 21.67 39.47 43.00 40.23 84.15 27.06 21.70 41.15 42.86
Trident [36] 41.62 83.74 28.22 21.17 41.86 43.32 42.16 84.5 28.24 21.98 42.08 43.79 40.70 80.75 25.45 20.81 42.19 41.98
TextRegion [42] 41.53 83.83 27.39 21.21 40.49 43.17 42.29 84.21 27.13 21.74 41.26 43.33 42.88 83.19 28.62 22.55 42.15 43.88
RADSeg 44.49 87.24 29.79 27.16 42.04 46.14 45.64 89.28 30.76 28.96 45.35 48.00 45.14 84.07 29.05 28.93 48.79 47.20
RADSeg+ 48.23 88.69 31.66 29.44 45.59 48.72 48.59 90.35 32.45 30.86 47.82 50.01 48.01 86.17 30.40 30.71 50.72 49.20

Huge Models
RayFronts [1] 31.67 72.59 23.31 20.46 28.98 35.40 32.29 73.36 23.44 21.19 31.84 36.42 32.19 67.64 22.13 21.08 34.27 35.46
ProxyCLIP [20] 39.16 78.02 26.19 23.90 43.64 42.18 38.31 83.03 27.76 24.05 43.92 43.21 37.03 71.66 21.81 23.65 43.09 39.45
Trident [36] 43.16 87.97 28.55 25.64 46.87 46.44 44.32 88.67 28.52 26.70 46.30 46.90 43.77 87.22 25.72 27.02 47.34 46.21
TextRegion [42] 44.04 89.53 30.19 24.53 47.35 47.13 44.76 89.42 29.85 26.42 47.04 47.50 46.13 89.36 31.22 27.30 46.88 48.18
RADSeg 42.27 89.58 28.3 25.96 38.85 44.99 44.8 89.74 28.93 28.21 42.93 46.92 45.01 88.52 29.46 27.15 47.75 47.58
RADSeg+ 45.44 90.04 30.12 27.75 41.66 47.00 47.74 90.14 30.44 29.92 45.78 48.80 47.92 89.24 30.84 29.82 50.01 49.57

A3. Additional 3D Evaluation Details

3D mapping for evaluation. We follow RayFronts’ [1]
approach to construct the 3D map and perform the evalu-
ation. Given a pose Pt ∈ SE(3), a corresponding depth
map Dt ∈ RH×W , and a feature map Ft ∈ RH×W×D, fea-
ture pixels are back projected to a 3D point cloud P local

t =
{(pi, fi)}Mi=1, where pi ∈ R3 denotes 3D position, and
fi ∈ RD+1 represents the concatenated feature vector, and
hit count (initialized to 1 per point). Local updates are ac-
cumulated over frames and voxelized at a resolution of α to
form the global semantic voxel map P global

t = {(pi, fi)}Ni=1.
During voxelization, points that lie in the same voxel get
their features averaged, and their hit counts summed to use
as weights for subsequent averaging. In case of probability
space 3D aggregation, the embedding dimension D in the
feature map and semantic voxel map is equal to the num-
ber of classes as segmentation probabilities are projected
instead of embeddings.

Datasets. Following prior works [1, 12, 15, 40]
for our 3D OVSS evaluation, we choose the scenes,
office[0-4], room[0-2] from Replica and
scene[0011,0050,0231,0378,0518] from
ScanNet. Additionally, to assess performance on
a cleaner real-world dataset, we evaluate on Scan-
Net++ and select nine diverse scenes. The selected
scenes are scene[00777c41d4, bcd2436daf,
a5114ca13d, 2b1dc6d6a5, d551dac194,
f9f95681fd, ea42cd27e6, 20ff72df6e,
bf6e439e38]. We use all 101 classes from Replica, the
standard ScanNet-to-NYU40 label mapping provided with
the dataset itself for ScanNet, and the top 100 classes from
ScanNet++ as defined in its official semantic segmentation
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Figure A.1. Ablation study on different temperature factors τscra
and τscga. Left plot shows performance as we change τscra with-
out SCGA. Right plot uses τscra = 10 and varies τscga. Overall
τscra = τscga = 10 yield the best results on average.

benchmark. In ScanNet, we assign three of the forty
classes (‘otherprop,’ ‘otherstructure,’ and ‘otherfurniture’)
as ignore classes due to their ambiguity.

Implementation details. For all the datasets, we resize
each image by setting the shorter side to 640 and keeping
the original aspect ratio. A frame skip of 10 and 5cm vox-
els are used for constructing the 3D map. We use exter-
nal ground-truth voxels for Replica (following [1], we use
those provided by HOV-SG) and for ScanNet++. For Scan-
Net, however, we derive the ground truth by lifting the 2D
semantic segmentation annotations into 3D.

A4. Additional Ablations and Detailed Tables
We ablate temperature parameters τscra and τscga for
SCRA and SCGA at mid resolution across 2D datasets.
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Table A.3. Expanded version of Tab. 3. Ablation of different RADIO language adapters across model sizes. Mid resolution is used.
RADIOv3-base with the SigLIP2 CLS adaptor has the best performance across datasets and model sizes.

Methods Base Large Huge
CTX VOC Stuff ADE City Avg CTX VOC Stuff ADE City Avg CTX VOC Stuff ADE City Avg

Rv2.5-SigLIPcls 34.24 84.99 24.66 23.11 32.78 39.96 31.70 83.88 23.68 21.00 32.49 38.55 31.12 79.04 23.00 21.92 29.78 36.97
Rv2.5-CLIPcls 33.42 86.55 23.56 22.37 31.24 39.43 31.09 84.57 22.68 20.10 30.53 37.79 27.81 79.70 21.08 20.03 25.65 34.85
Rv2.5-SigLIPpatch 0.31 1.00 0.06 0.14 0.09 0.32 0.27 0.97 0.06 0.12 0.14 0.31 0.37 1.06 0.06 0.17 0.13 0.36
Rv3-SigLIPcls 40.40 88.07 27.41 27.30 39.94 44.62 1.00 1.46 0.52 0.15 1.18 0.86 35.23 88.35 24.55 24.34 33.74 41.24
Rv3-CLIPcls 37.90 86.89 26.36 24.48 35.99 42.32 0.67 1.71 0.07 0.12 1.17 0.75 29.48 84.07 21.85 21.39 27.16 36.79
Rv3-SigLIPpatch 0.11 2.47 0.05 0.14 0.89 0.73 0.12 2.50 0.04 0.14 0.98 0.76 0.12 0.84 0.05 0.12 0.14 0.25

Table A.4. Expanded version of Tab. 5. Ablation study showing
RADIOv3’s ability to empower existing approaches. Mid resolu-
tion is used. ProxyRADIO-D/S refer to using DINOv2 and SAM
adapted feature maps respectively for the proxy attention. RADIO
can improve mIoU for different CLIP-based baselines.

Methods CTX VOC Stuff ADE City Avg
NACLIP [13] 34.70 80.28 23.65 17.78 35.98 38.48
NARADIO 40.85 86.25 27.93 27.19 40.47 44.54
ProxyCLIP [20] 37.76 80.24 26.4 19.65 40.28 40.87
ProxyRADIO-D 41.62 86.52 29.28 26.90 42.87 45.44
ProxyRADIO-S 41.99 87.90 29.33 27.00 44.04 46.05
ResCLIP [44] 36.52 85.79 24.91 18.43 36.02 40.33
ResRADIO 41.79 87.96 28.74 26.63 40.77 45.18
RADSeg 45.64 89.28 30.76 28.96 45.35 48.00

Fig. A.1 highlights the importance of scaling the atten-
tion correlation matrix to sharpen the attention to seman-
tically similar patches and similarly for global aggregation.
τscra = τscga = 10 yield the best results and is what we
use for all experiments.

To demonstrate the effectiveness of the components of
RADSeg, we augment Tab. 4 with a qualitative visualiza-
tion. Fig. A.2 qualitatively illustrates the effectiveness of
SCRA and SCGA in suppressing noise in the feature map
and segmentation as well as reducing windowing artifacts.
The effect is particularly pronounced in higher resolution
datasets like Cityscapes. And while RADIO-SAM refine-
ment is a post-segmentation process that cannot refine fea-
tures, it is able to provide higher fidelity masks in many
cases. Overall, the proposed RADSeg and RADSeg+ com-
ponents demonstrate quantitative and qualitative improve-
ments.

Finally, for reference, we provide per-dataset details for
Tab. 3 in Tab. A.3 and per-dataset details for Tab. 5 in
Tab. A.4.

A5. Additional Efficiency Evaluation Details

Improving baselines efficiency. To have a robust com-
parison, we modify the inference code of NACLIP [13],
ResCLIP [44], SC-CLIP [3], and ProxyCLIP [20] to use
batched sliding window inference as opposed to iterating

over each window. This significantly improves the base-
lines latency and gives us stronger comparison points. In
our experiments, all baselines use batched sliding windows
with a batch size equal to the number of windows.

What latency to report ? Input resolutions vary across
datasets and even across samples since only the shorter im-
age side is fixed. Some methods adjust hyperparameters
per dataset, affecting total computation. Furthermore, the
latency of methods (including RADSeg+) can vary with the
content of an image as the number of masks varies. To pro-
vide a holistic measure that reflects all computations con-
tributing to a method’s final segmentation accuracy, we re-
port the average latency across all validation samples in
each dataset, as shown in Tab. A.5. The table reveals sub-
stantial latency differences between datasets, underscoring
that measuring latency on a single image or at a fixed reso-
lution does not capture overall performance.

Latencies are measured using mid resolution, FP32 pre-
cision, on a Tesla V100-32GB GPU. In addition, the num-
ber of parameters of the vision encoders of each method is
reported. Fig. 1 visualizes the mIoU vs number of parame-
ters and mIoU vs latency tradeoffs. Notably, at mid resolu-
tion, RADSeg-base surpasses huge Trident and TextRe-
gion baselines while being 9.3x-12.6x faster and having
8.1x-12.8x fewer parameters.

A6. Additional Qualitative Results
We provide additional 2D and 3D qualitative comparisons
in Fig. A.3 and Fig. A.4, further illustrating the strengths
of RADSeg over existing open-vocabulary segmentation
methods. In 2D, RADSeg yields cleaner boundaries and
more accurate segmentations in both cluttered indoor scenes
and complex urban layouts. In 3D, it shows strong multi-
view consistency, producing coherent semantic voxels with
far fewer outliers and mislabeled regions than the baselines.
These visualizations reinforce the ability of RADSeg, with
its proposed components, to suppress noise and enhance ob-
ject localizations across various scenarios.
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Figure A.2. Qualitative comparison of the contribution of each RADSeg component to feature and prediction quality. For each 2D dataset
we show two rows: the first demonstrates how adding RADSeg components progressively improves segmentation output, while the second
(Showing first 3 PCA components) illustrates how SCRA and SCGA enhance feature map quality and mitigate windowing artifacts. The
accompanying bar plot links these visual trends to per-sample mIoU scores. Overall, the proposed RADSeg components yield clear
improvements in both segmentation accuracy and feature-map fidelity.
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Table A.5. Compute and parameter efficiency across datasets on a V100 GPU at mid resolution and FP32 precision. The table reports
vision encoder parameters, average mIoU across datasets, and per-dataset latency to capture differences arising from varying input reso-
lutions—both across and within datasets. Illustrated visually in Fig. 1. At mid resolution, RADSeg-base surpasses huge Trident and
TextRegion baselines while being 9.3x-12.6x faster and having 8.1x-12.8x fewer parameters.

Methods Lat. (s) Lat. (s) Params (M) mIoU (%)
CTX VOC Stuff ADE City Avg

Base Models
NACLIP [13] 0.091 0.025 0.074 0.111 0.144 0.089 86 38.48
ResCLIP [44] 0.252 0.152 0.266 0.325 0.311 0.261 86 40.33
RayFronts [1] 0.106 0.035 0.087 0.109 0.218 0.111 103 42.14
ProxyCLIP [20] 0.689 0.262 0.247 0.693 1.446 0.667 171 40.87
SC-CLIP [3] 0.148 0.059 0.111 0.174 0.243 0.147 86 41.86
Trident [36] 0.353 0.229 0.348 0.414 0.923 0.454 264 43.79
TextRegion [42] 0.410 0.403 0.438 0.428 1.729 0.682 167 43.33
Talk2Dino [4] 0.150 0.043 0.155 0.188 0.289 0.165 86 43.00
RADSeg 0.109 0.036 0.088 0.112 0.228 0.115 105 48.00
RADSeg+ 0.261 0.156 0.286 0.360 0.709 0.354 125 50.01

Huge Models
RayFronts [1] 0.619 0.204 0.460 0.598 1.362 0.649 661 36.40
ProxyCLIP [20] 1.297 0.494 0.451 1.28 3.168 1.338 717 43.21
Trident [36] 1.426 0.900 1.123 1.444 2.365 1.451 1349 46.90
TextRegion [42] 0.732 0.670 0.711 0.744 2.476 1.067 857 47.50
RADSeg 0.617 0.202 0.457 0.594 1.363 0.647 664 46.92
RADSeg+ 1.172 0.734 1.074 1.341 2.128 1.290 684 49.05
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Figure A.3. Additional visualizations of 2D semantic segmentation results generated by RADSeg, RADSeg+ and the most competitive
baselines on images from all the benchmarks. Along with achieving SOTA mIoU for 2D OVSS, RADSeg and RADSeg+ produce more
precise segmentation maps and sharper object boundaries for both single-object as well as multi-object complex scenes.
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Figure A.4. Sample visualizations of 3D semantic segmentation results generated by RADSeg and all the baselines for scenes from
Replica (scene-office2), ScanNet (scene-0378), and ScanNet++ (scene-ea42cd27e6. “RGB” and “GT” refer to the RGB scene
reconstruction and Ground Truth semantics for each corresponding scene. RADSeg achieves SOTA mIoU for 3D OVSS and produces
cleaner and more accurate semantic voxels.
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